文章编号: 0258-7025(2002) 12-1113-04

混浊介质线偏振入射光 180°后向散射特性参数的测定

张大伟,李国华

(曲阜师范大学激光研究所,山东曲阜 273165)

提要 利用生物组织等混浊介质偏振入射光的 180°后向散射特性,可以反映该介质的内部结构信息。介绍了把混 浊介质"黑箱化",用旋光度 α,保偏度 β,反射率 r 来表征这种散射特性,设计了测定特性参数的实验系统,并对不 同浓度的牛奶的去离子水溶液进行了测定,当浓度为 25% 时, α= 3°, β= 0.15, r = 0.09。改变样品的浓度,3 个参 数也发生不同程度的改变。

关键词 混浊介质,后向散射,米勒矩阵,生物组织 中图分类号 0436.2 文献标识码 A

Measurement about Turbid Media 180 Degree Back Scattering Characteristic Parameters for Linear-polarized Incident Light

ZHANG Darwei, LI Guo-hua

(Laser Research Institute, Quf u Normal University, Quf u, Shandong 273165)

Abstract The 180 degree back scattering character of biologic tissue and other turbid mediae can reflect the media's information inside. Regarding turbid media as a "Black-box", the back scattering characteristic parameters for linearpolarized light in trubid media can be expressed by a polarization plane rotation angle α , polarization maintaining factor β and reflectivity r. A schematic of the measurement about the characteristic parameter was designed. And the milk's deionized water solutions with different concentration were measured. When the concentration is 25%, $\alpha = 3^{\circ}$, $\beta =$ 0.15, r = 0.09. When the solution's concentration is changed, the three parameters will be changed, too. **Key words** turbid media, back scattering, Muller matrix, biologic tissue

1 引 言

光学不均匀性十分显著的介质能产生强烈的散射现象,该类介质称为混浊介质。混浊介质的散射现象,是近年来生物医学光子学的研究热点。主要是因为绝大部分生物组织,对 600~1300 nm 波段的光波都是高散射和低吸收的混浊介质,并且,散射的光子携带了大量的散射体的结构信息。早在1976年,Bickel就宣布了散射光中的偏振信息是一种新的研究生物组织的物理工具^[1]。此后,人们对混浊介质散射现象进行了广泛的研究,例如利用散射光中的偏振信息进行细菌或细胞鉴定、多核上层

结构和其他生物结构的研究^[2,3]。以上提到的应用 和研究需要在前向散射光中大的范围内测量偏振光 的辐照度。然而在实际检测中,容易得到的是被探 测物质的后向散射光,例如在医学诊断、海洋和大气 的探测中。因此,近年来研究中心开始向后向散射 转移。如 Mishchenko 和 Hovenier 对随机分布的非 球形颗粒的后向散射光的退偏进行的理论分析^[4]、 利用后向散射光中偏振信息对气溶胶颗粒尺寸分布 的研究^[5]、混浊介质后向散射光时间相关退偏度研 究^[6]、利用 CCD 研究混浊介质的浓度颗粒大小对偏 振入射光后向散射的影响^[7]等。

收稿日期: 2001-09-18; 收到修改稿日期: 2001-12-14

作者简介: 张大伟(1977一), 男, 山东济宁人, 曲阜师范大学激光研究所硕士研究生, 现进行偏振光学测试技术的研究。E-mail: dwzhang@ eyou. com

米勒矩阵表示法被称为偏振调制技术三要素之 一, 是偏振测量系统设计、分析和评价的有力数学工 具。本文将把混浊介质"黑箱化", 用旋光度 α, 保偏 度 β, 反射率 r 来描述混浊介质的 180° 后向散射特 性, 运用米勒矩阵这一数学工具, 设计测定 α, β, r 的实验系统并实际进行测定。

2 系统构造和测定原理

2.1 系统结构

系统结构如图 1 所示, He Ne 激光器 L 发出的 632.8 nm 的激光先被斩波器(ND-1 型可变频率双 参考斩光器)从 0 频调到高频(实验中,选定 50 Hz),经过 P₁ 被起偏,经过分束器 B(K9 玻璃片), 一部分反射,一部分从 B 出射并入射到样品 S 上 (这里的入射方式为从上到下,避免了侧向入射时, 器皿的镜面反射所造成的影响)。垂直线偏振光通 过混浊介质后(可用牛奶与去离子水的混合溶液模 拟),180°后向散射部分将返回并入射到 B 上,并且 一部分将经 B 反射到偏振方向可调的检偏器P₂上。 从 P₂ 出射的线偏光被光电探测器 M(SI-440-UV 型硅探测器)接收,光电流经过前置放大器变为电压 信号并被放大,该信号输送到 ND-201 型锁相放大 器里,锁相放大器的输出信号由其面板直接读出。

图 1 混浊介质线偏振入射光 180°后向散射米勒矩阵 测定研究系统构造图

L:激光光源; B:分束器; C:斩波器; R:平面镜; P₁, P₂:线偏器; S:混浊介质; M:光电探测器; A:前置放大器; K: 锁相放大器

Fig. 1 Schematic represation of the measurement about turbid media 180 degree back scattering characteristic matrix for line polarized incident light

L: laser; B: beam splitter; C: chopper; R: plane mirror; P_1 , P_2 : polarizer; S: turbid media; M: detector; A: preamplifier; K: lockin amplifier

2.2 测定原理

在一般的研究中,都认为可以由散射系数和散 射相关函数来表征散射特性^[8]。该理论是基于这样 一种模型:把光在生物组织中的传播进而有光能分 布的物理实体,用一种粒子传输过程来模拟。粒子 的数密度等价为光能,同时把生物组织理解为大量 无规则分布的散射粒子和吸收粒子。这种模型的散 射特性(散射系数和散射相关函数)都可以由实验测 定,并能反映出生物组织折射率的空间起伏和涨落。 但是这种模型中不再出现偏振等光学概念。实际 上,在混浊介质的散射中,偏振因素是个不容忽略的 参数;偏振效果也是个非常有研究价值的物理现 象^[1-7]。在考虑偏振因素以后,散射系数和散射相 关函数将不再是我们研究的散射特性,而是根据唯 像的理论^[9],把混浊介质看作一个"黑箱","黑箱"中 包括旋光器、退偏器、反射镜等器件,将表征散射体 对入射光作用效果的旋光度、退偏度和反射比作为 散射特性。

因此混浊介质的米勒矩阵就可以写为旋光度为 α 的旋光器、退偏度为 d 的退偏器(为了方便书写, 我们定义保偏度 $\beta = 1 - d$)、反射比为 r 的平面镜 三个器件米勒矩阵的乘积。经计算可以得到

$$S_{\text{ample}} = \begin{vmatrix} r & 0 & 0 & 0 \\ 0 & r\beta\cos 2\alpha & -\betar\sin 2\alpha & 0 \\ 0 & -\betar\sin 2\alpha & -\beta\cos 2\alpha & 0 \\ 0 & 0 & 0 & -\betar \end{vmatrix}$$
(1)

确定出 α, β, r 的值,则混浊介质线偏振入射光 180° 后向散射的米勒矩阵就可以确定。根据矩阵光学,如 果一个器件的米勒矩阵已知,则入射光与其作用后 的斯托克斯矢量可以由矩阵相乘的方法得到。因此, 确定了 α, β, r 的值,则线偏振入射光经混浊介质散 射后的斯托克斯矢量就可以得到。所以混浊介质对 线偏振入射光在 180° 后向方向上的散射特性,可以 由 α, β, r 这三个参数来表征。下面来设计测定这三 个参数的实验系统并进行实际测定。

为了简化计算,设入射至样品之前的偏振光的 斯托克斯矢量为 S_{ini}。这样,在入射样品之前光线所 经过的路程和器件就可以不加考虑。设

$$S_{\text{ini}} = \begin{vmatrix} 1\\\cos 2A\\\sin 2A\\0 \end{vmatrix}$$
(2)

$$R = \begin{vmatrix} 1 & \sin 2 Y & 0 & 0 \\ \sin 2 Y & 1 & 0 & 0 \\ 0 & 0 & -\cos 2 Y & 0 \\ 0 & 0 & 0 & -\cos 2 Y \end{vmatrix}$$
(3)

其中 x是根据菲涅耳定律计算得出的入射光在分束 器里的折射角,需要说明的是,该反射矩阵的各元素 都省略了一个常数因子。可以证明,这样的省略对后 面的测定没有影响。

偏振器 *P*₂ 的米勒矩阵为(设偏振器的起偏方向 与水平方位的夹角为 θ, 在操作中, θ是不固定的, 随 不同情况在 0°~ 180°之间可调)^[11]

$$P_{2} = \begin{vmatrix} 1 & \cos 2\theta & \sin 2\theta & 0\\ \cos 2\theta & \cos^{2} 2\theta & \sin 2\theta \cos 2\theta & 0\\ \sin 2\theta & \sin 2\theta \cos 2\theta & \sin^{2} 2\theta & 0\\ 0 & 0 & 0 & 0 \end{vmatrix}$$
(4)

这样,入射偏振光 S_{ini} 经过 P₁, B, S, P₂ 后,其斯托 克斯矢量 S_{fn} 可以描述如下

 $S_{fin} = [P_2][R][S_{ample}]S_{ini}$ (5) 经矩阵计算,可以得到斯托克斯矢量的 S_0 大小为

$$S_0 = r(1 + \sin 2 \times \cos 2\theta + \beta \cos 2\alpha \sin 2 \times \cos 2A + \theta \cos 2\alpha \sin 2 \times \cos 2A)$$

 $\beta \cos 2\alpha \cos 2A \cos 2\theta +$

 $\beta \sin 2 \alpha \cos 2 x \cos 2A \sin 2\theta +$

 $\beta \cos 2 \alpha \cos 2 \gamma \sin 2A \sin 2\theta -$

 $\beta \sin 2 \alpha \sin 2 \gamma \sin 2A - \beta \sin 2 \alpha \sin 2A \cos 2\theta$ (6)

根据斯托克斯矢量的定义, S_0 就是被探测偏振 光的光强大小, 也就是硅探测器所反映出的光强数 值。在本系统中, 得到的数据是由锁相放大器读出的 电压信号 V, 它与硅探测器所接收的光强大小的关 系是 $V = CS_0$, 其中, C 是硅探测器、前置放大器组 成的光电转换系统的转换系数, 数值大小是硅探测 器的辐照响应度、前置放大电路的流压转换系数和 电压放大倍数的乘积。为了减小误差, 在测定中, 我 们采用比值的方法获得该转换系数的值。

下面具体计算样品的各待定参数。

首先,把样品换为光洁度很好的平面镜,其反射 率 r 可近似为1。同时,平面镜的 $\alpha = 0$, $\beta = 1$ 。当A= 0°, $\theta = 0°$,即入射光为偏振方向与水平方位是 0° 的线偏振光,检偏器 P_2 与水平方位角为 0° 时,根据 式(6) 得

$$S_{01} = 2 + 2\sin 2 X$$
 (7)

由于当分束器方位固定以后, v值就已确定, 根 据式(7) 计算出 S₀₁ 大小。读出并记录此时锁相放大 器读数 V₀₁。

换上样品, 保持 *A* = 0°, 则式(6) 变为

 $S_{01} = r(1 + \sin 2 \times \cos 2\theta + \beta \cos 2\alpha \sin 2 \times +$

 $\beta_{\cos 2} \alpha_{\cos 2} \theta + \beta_{\sin 2} \alpha_{\cos 2} v_{\sin 2} \theta$) (8) 调整 P_2 方位角, 使其分别为 0°, 45°, 90°, 读出和记 录锁相放大器的示数 V_x 。由 $V = CS_0$ 可以得到

$$S_{0x} = V_x S_{01} / V_1 \tag{9}$$

并由式(9)得到 P_2 方位角分别为 0° ,45°,90°三种情况下相对应被探测光的斯托克斯矢量 S_0 的大小。将这三个值分别代入式(8),得到三个方程,联立求解则可以得到三个未知数 α , β ,r的值。

3 测 定

混浊介质选用市售的牛奶和去离子水的混合溶 液。对牛奶用电位颗径仪测定,得其直径为1.4 μm,满足米氏散射条件。牛奶装在1 cm×1 cm×3 cm的石英皿内。测定的数据如表1。

表 1 25%牛奶去离子水溶液的 180°后向散射特性参数的测定数据

	Table 1 Measured da	ata of back scatterin	ng characteristic par	rameters of 25% m	$\mathbf{nilk's}$ deionized water	solution
Order	Sample	P_1 angle	P_2 angle	Gain factor	Sensibility $V_{\rm fs}$	Reading V
1	Plane mirror	0°	0°	1000	1000 mV	0.304

		1 0	- 0		13	0
1	Plane mirror	0°	0°	1000	1000 mV	0.304
2	25% (density) milk	0°	0°	1000	100 mV	0.157
3	25% (density) milk	0°	45°	1000	10 mV	0.848
4	25% (density) milk	0°	90°	1000	10 mV	0.112

根据 V_s = V_{fs} V/k, 计算得锁相放大器所测的 光电流信号分别为

 $V_1 = 0.304 \text{ mV}; V_2 = 0.157 \times 10^{-1} \text{ mV};$

$$V_3 = 0.848 \times 10^{-2} \text{ mV}; V_4 = 0.112 \times 10^{-2} \text{ mV}$$

取 K9 玻璃对 632.8 nm 的折射率为 1.516, 光 波入射角为 45°时, 折射角 Y 满足

 $\sin x = \sin 45/1.516; \sin 2x = 0.825$

由式(7) 可得 $S_{01} = S_{01} = 2 + 2\sin 2 X = 3.65$

根据式 $S_{0x} = V_x S_{01} / V_1$,可以得当 P_2 方位角 θ 为 0°, 45°, 90° 时, 180° 后向散射光斯托克斯矢量的 S_0 为 S_{02} , S_{03} , S_{04} 的数值分别为 0. 191, 0. 103 和 0. 0131。将数据代入方程(8),可以得到如下方程组 $r(1+0.828+0.828\beta\cos 2\alpha + \beta\cos 2\alpha) = 0.188$ $r(1+0.828\beta\cos 2\alpha + 0.561\beta\sin 2\alpha) = 0.1018$

r(1 - 0.828 + 0.828)	$\beta \cos 2\alpha - \beta \cos 2\alpha) = 0.013$	34
联立方程组并利用数学	学软件 MATHCAD 7 求解得	手

$$S_{\text{ample}} = \begin{vmatrix} r & 0 & 0 & 0 \\ 0 & r \beta \cos 2\alpha & -\beta r \sin 2\alpha & 0 \\ 0 & -\beta r \sin 2\alpha & -\beta \cos 2\alpha & 0 \\ 0 & 0 & 0 & -\beta r \end{vmatrix} =$$

	0.09	0	0	0	
	0	0.0134	- 0.00141	0	
	0	- 0.00141	- 0.149	0	
	0	0	0	- 0.0135	
	至此,	我们得到了	混浊介质线体	扁振入射光 1	180°
后向	句散射的	的特性矩阵。			

当牛奶浓度为50%时,测定的数据如表2。

表 2 50% 牛奶去离子水溶液的 180° 后向散射特性参数的测定数据 Table 2 Measured data of back scattering characteristic parameters of 50% milk[']s deionized water solution

Order	Sample	P_1 angle	P_2 angle	Gain factor	Sensibility $V_{\rm fs}$	Reading V
1	Plane mirror	0°	0°	1000	1000 mV	0.304
2	50% (density) milk	0°	0°	1000	100 mV	0.206
3	50% (density) milk	0°	45°	1000	10 mV	1.112
4	50% (density) milk	0°	90°	1000	10 mV	0.152

根据同样的方法,可以计算得到该浓度下,当 P_2 方位角 θ为 0°, 45°, 90° 时, 180° 后向散射光斯托 克斯矢量的 S_0 为 S_{02} , S_{03} , S_{04} 的数值分别为 0. 2472, 0. 1340 和 0. 01830, 混浊介质的三个特性参 数的值分别为 r = 0.12; $\beta = 0.13$; $\alpha = 4.2°$ 。

由以上数据可以看出,当改变混浊介质的浓度 后,α,β,r这三个特性参数也发生了不同程度的改 变,这也说明这三个参数能反映混浊介质的内部信 息,把其作为散射特性也是合理的。

影响测量精度的因素主要有:1) 偏振镜方位角 的精确度;2) 微弱信号检测中的噪声干扰;3) 光电 转换系统的转换系数 C 数值的偏差。为了使偏振镜 的方位角精确, P1, P2 均放置在日本岛津公司生产 的旋转调节支架上,可以精确将其方位角固定在某 个位置,特别是整刻度上;为了减小检测中的噪声干 扰,光路部分全部放置在暗箱中,锁相放大器使用的 是 ND-201 型, 主机具有高通、低通滤波器及自动跟 踪带通滤波器,前置放大器为超低噪声前置放大器, 输入阻抗为5 M Q40pF, 为抑制共模信号, 将其"接 地""浮地"开关置"浮地",使共模抑制比达到 80 dB 以上。为了减小读数误差,在读取数据时,将显示面 板方式设置为"VX-VY,模拟-数字"方式,并使 VX 即模拟表示数为0,信号大小全部由数字表读出;在 处理光电转换系统的转换系数 C 时,采用了比值 法,而没有采用传统的根据硅探测器的辐照响应度、 前置放大电路的流压转换系数和电压放大倍数的乘 积计算的方式。实验数据显示,这些措施使测量误 差减小到了一个可以接受的程度。

参考文献

- W. S. Bickel, J. F. Davidson, D. R. Huffman *et al.*. Application of polarization effects in light scattering: a new biophical tool [C]. *Proc. Natl. Acad. Sci. USA*, 1976, **73**: 486~ 490
- 2 Willem P. van De Merwe, Donald R. Huffman, Burt V. Bronk. Reproducibility and sensitivity of polarized light scattering for identifying bacterial suspensions [J]. Appl. Opt., 1989, 28(23): 5052~5057
- 3 Burt V. Bronk, Stephen D. Druger, Willem P. van De Merwe. Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering [J]. *Biophysical Journal*, 1995, 69(9):1170~1177
- 4 M. I. Mishchenko, J. W. Hovenier. Depolarization of light backscattered by randomly oriented nonspherical particles [J]. Opt. Lett., 1995, 20(12):1356~1358
- 5 N. J. McCormick. Particle size distribution retrieval from backscattered polarized radiation measurements: a proposed method [J]. J. Opt. Soc. Am. A, 1990, (7):1811~ 1816
- 6 A. Dogariu, C. Kutsche, P. Likamwa et al.. Timedomain depolarization of waves retroflected from dense colloidal media [J]. Opt. Lett., 1997, 22(9):585~587
- 7 Andreas H. Hielscher, Judith R. Mourant, Irving J. Bigio. Infulence of paticle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions [J]. Appl. Opt., 1997, 36(1):125~134
- 8 Li Hui, Xie Shusen, Lu Zukang et al.. A new model of the light scattering in biological tissue for visible and near infrared region [J]. Acta Optica Sinica (光学学报), 1999, 19(12): 1662~ 1666 (in Chinese)
- 9 Ryan C. N. Studinski, L. Alex Vitkin. Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction [J]. *Journal of Biomedical Optics*, 2000, 5(3): 330~ 337
- 10 E. Collett. Polarized Light: Fundamentals and Applications [M]. New York: Marcet Dekker, 1993
- 11 Li Guohua. Optics [M]. Jinan: Shandong Education Publishing Company, 1990. 459~ 462 (in Chinese)